CS152 Computer Architecture

Final Project:

MIPS DSP Processor

Codename:

BLITZ

[image: image1.png]

Pete Perlegos SID# 13520625

Suparn Vats SID# 13156688

David Wang

Tu 1-2

BLITZ DSP Processor

For our final part of the project, we chose Track #2: Instruction Set Extensions and Hardware Acceleration, specifically MIPS DSP. We added acceleration for the two most frequently used DSP kernels, the FIR filter and IIR filter. For this project, we implemented some hardware features found in many digital signal processors designed to speed up the execution of the two filter kernels.

For all of the DSP instructions that we added, we made the necessary changes in our controller to support the hardware that was added to execute the new instructions. In most cases, hardware was simply added to perform multiple operations at one time. The core concepts were to minimize the number of cycles required to execute the required kernels and make the least number of changes to our previous version of the processor. Even though there were major time constraints only two of all the possible instructions, load word double (lwd) and load word double increment (lwdi), suggested for the DSP speedup were left unimplemented. However, even for these two instructions the implementation plans for the future were laid out and the possible contingencies discussed.

The report contains a discussion of all the modifications and additions made to the processor for the following instructions: multiply (mult), load word and increment pointer (lwi), multiply and accumulate (mac), and branch on not equal and decrement counter (bned). Finally, the processor was tested before and after the DSP acceleration for an analysis of the performance gain achieved with the additional hardware.

Design Strategy:

The main design challenge was adding functionality to an extremely complex working system without breaking it. Making the least number of changes to the existing system and hence maintaining all the abstractions developed earlier accomplished this task. The design problem was broken down based on each DSP instruction (i.e., the changes and additions were done for one DSP instruction at a time).

The multiply instruction (mult):
Given below is the usage and meaning of the mult instruction.

Instruction:
mult
$s1, $s2, $s3

Meaning:

$s1 = $s2[15:0]*$s3[15:0]

This instruction is almost a requirement for any implementation of DSP acceleration and is used atomically by the FIR and IIR kernels. The mult instruction was done using an array multiplier with one internal pipeline stage. Originally, two pipeline stages were used. But only one pipeline stage was used in the end because it was a simple and good fit into the old design, allowed for the simple addition of the multiply and accumulate (mac) instruction, and did not affect our critical path. For simplicity of simulation, there is only one block that does the multiplying, and the necessary register is added before it to simulate the one internal pipeline stage. The main issue to be resolved for this instruction was doing the correct stalling when the possible forwarding is required by the code given for the FIR and IIR kernels. Fortunately, the ordering of the instructions for the FIR and IIR kernels do not have any dependencies that require stalling to do the needed forwarding.

The load word and increment instruction (lwi):

Given below is the usage and meaning of the lwi instruction.

Instruction:
lwi
$s1, 100($s2)

Meaning:

$s1 = mem[$s2+100] and $s2 = $s2 + 4

This instruction eliminates the need for an additional instruction to increment the offset required to fetch the next data from memory. This is accomplished by doing the addition to the offset stored in the register in parallel. In essence this combines two instructions in one as shown below and effectively leads to doing two instructions in one cycle.

Before:
lw
$s1, 100($s2)

.

addiu
$s2, $s2, 4

After:

lwi
$s1, 100($s2)

There were four main changes made to implement this instruction. First, the main control for the processor was modified and a new opcode added to support the instruction. Second, a fixed adder in the execution stage of the pipeline was added to increment the offset register (i.e., $s2 in the above example). The ALU cannot be used to do the addition as it is computing the memory address to be accessed at the same time in the same stage (i.e., the execution stage). Therefore, the additional hardware adds parallelism to the processor. Third, the regfile was modified to accept data writes to two different registers at the same time in the write back stage of the pipeline. This modification is needed so that the loaded data can be written to $s1 (see example above) and the incremented value of $s2 (see example above) can be written back at the same time. With these modifications/additions in place the new controller simply issues the correct control signals to do the mentioned tasks. It should be noted that the DSP acceleration system was designed specifically for the FIR and IIR kernels described in the Digital Signal Processing Extension handout. So, hardware/control for data hazards was added only to handle the case for the kernels listed in that handout. For example, because the following case shown below isn’t part of FIR and IIR kernels there is no support for handling this case. This was the fourth and final modification to make this instruction functional.

 Unsupported example:
lwi
$s1, 100($s1)

Please use the hyperlinks below for more details.

The multiply and accumulate instruction (mac):

Given below is the usage and meaning of the mac instruction.

Instruction:
mac
$s1, $s2, $s3

Meaning:

$s1 = $s1 + $s2[15:0] * $s3[15:0]

This instruction is similar in concept to the lwi instruction described above. It too eliminates the need of an additional instruction required to accumulate the result of the multiplication of $s2[15:0] * $s3[15:0] into $s1. In addition it also saves a register from being used to store the result of the multiplication of $s2[15:0] * $s3[15:0]. So, this instruction gives the following reduction shown below, saving one clock cycle and one temporary register.

Before:
mult
$t1, $s2, $s3

.

add
$s1, $s1, $t1

After:

mac
$s1, $s2, $s3

Iam here

The mac instruction was easily added by shortening the mult into having one internal register and then placing an adder in that last register spot and making a decision as to whether or not to add depending on if we have a mult or mac instruction.

instructions we decided to change the regfile in order to write to two registers at once in order to fully take advantage of the added hardware to do multiple operations in parallel. For the load and increment instructions, lwi and lwdi, we do the adding in parallel with the load and then write to both registers in parallel and therefore, effectively, do 2 instructions in one cycle. For lwd and lwdi we chose to do the loading of the double in two clock cycles in order to not drastically change the cache. Much of this change would be very difficult to do to have any real gain. Because of the design of our cache, to have any additional real gain, we would not only have to dramatically change how our cache is accessed, but we would have to add bursting from the DRAM to our cache, all of which would fall under the Performance track. We therefore do not have any gain from the loading of the double, but we do save one clock cycle from the increment.

The mac instruction was easily added by shortening the mult into having one internal register and then placing an adder in that last register spot and making a decision as to whether or not to add depending on if we have a mult or mac instruction.

The bned instruction is easily added by passing the needed subtract through the pipeline since the branch does not use any hardware after the decode stage. We simply altered the branch to pass along the correct decrement instruction and write to the correct register when the bned instruction is received, instead of just having no effect after the decode stage.

We have not quite finished completely debugging our additions to the instruction set. Therefore, we have not been able to test the improvement that our DSP acceleration has given us. The gains that we have could be even more dramatic if we made some improvements in the performance part of the project, such as deeper pipelining and modifying the cache.

Results:
The critical path in this case will either be our old critical path, when forwarding occurs from the execution stage during a branch, or the cache that we added.

Old critical path: criticalpath
reg32
m32x2
ALU
m32x2
m32x3
m32x4
compare
m32x2
adder
m32x2

3
1
15
1
2
3
2

1
8
1
= 37ns

The data cache has the worst delay: cache_critical_path
Reg32
cachblk
compare29
logic
new_data_MMU
LRU_update_blk

3
10

6

2
10

4

= 35ns

(The reason we said that we have not fully decided on this yet is because we have not yet finished fully testing.)

Conclusion:
As mentioned earlier in this report the main strategy used to deal with the complexity was to distribute the responsibilities amongst the different blocks. So, in some cases we shifted the processing burden from one block to another so as to balance the complexity. Making the wbsystem functional was the most difficult because it has to coordinate with the dmmu when getting a data/addr dump and providing hit data at the same time. Also, it was decided later in the design process that the dmmu/immu and LRU Update blocks will be coded in VHDL as simply combinational logic blocks (i.e., they don’t see the clock). The timing was resolved externally by buffering the required outputs. This issue again falls under the complexity distribution strategy. Although we thoroughly tested each block separately we were unsure about testing the processor as a whole because of the interleaved dram memory banks. In particular we weren’t sure about how to load instructions into the interleaved dram blocks. So, testing results will be delayed by one day.

Appendix I (notebooks):
Notebook – There is only one notebook since we were together virtually all of the time.

Appendix II (schematics):

pipeDSP
DRAM_arbitration
EXEC_incr_decr
forwarding_muxes
forwarding_reg
multiplier
multiply
instrcache
datacache
WB_system
criticalpath
cache_criticalpath
pipecache
pipecache1
pipecache2
pipecache3
Appendix III (vhdl):
adder
alu
arbitrtr
brancher
bts1
bts32
cacheblk
compar28
compar29
compare
compartr
const031
const1
const16
const31
control
controlDSP
divfour
extend
final_data_mmu
hazard_c
hazard_r
hazard_r_DSP
hit_block
instr_mmu
jumpbuf
lru_update_blk
lw_stall
m16x2
m1x4
m32x2
m32x3
m32x4
m32x5
m5x2
memctrl
multfour
multiplier
new_data_mmu
reg1
reg2
reg3
reg4
reg5
reg16
reg32
regfile
regfileDSP
shiftr
Appendix III (testing):

Coming soon (i.e., tomorrow (hopefully)).

